Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data

نویسندگان

  • Wenping Yuan
  • Shuguang Liu
  • Guirui Yu
  • Jean-Marc Bonnefond
  • Jiquan Chen
  • Ken Davis
  • Ankur R. Desai
  • Allen H. Goldstein
  • Damiano Gianelle
  • Federica Rossi
  • Andrew E. Suyker
  • Shashi B. Verma
چکیده

a College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China b U.S. Geological Survey (USGS), Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota 57198, USA c Geographic Information Science Center of Excellence, South Dakota State University, Brookings, South Dakota 57007, USA d KeyLaboratoryof EcosystemNetworkObservationandModeling, Synthesis ResearchCenter of ChineseEcosystemResearchNetwork, InstituteofGeographic SciencesandNatural ResourcesResearch, Chinese Academy of Sciences, Beijing 100101, China e INRA, EPHYSE, F-33883 Villenave Dornon, France f Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA g Earth System Science Center, Pennsylvania State University, University Park, PA 16802, USA h Atmospheric and Oceanic Sciences Department, University of Wisconsin — Madison, Madison, WI 53706, USA i Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA j Fdn Edmund Mach, IASMA Research and Innovation Centre, I-38100 Trento, Italy k IBIMET-CNR, Via Gobetti,101-40129 Bologna, Italy l School of Natural Resources, University of Nebraska — Lincoln, 807 Hardin Hall, 3310 Holdrege Street, Lincoln, NE 68583-0978, USA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales

[1] We propose the Breathing Earth System Simulator (BESS), an upscaling approach to quantify global gross primary productivity and evapotranspiration using MODIS with a spatial resolution of 1–5 km and a temporal resolution of 8 days. This effort is novel because it is the first system that harmonizes and utilizes MODIS Atmosphere and Land products on the same projection and spatial resolution...

متن کامل

Estimation of Global Vegetation Productivity from Global LAnd Surface Satellite Data

Accurately estimating vegetation productivity is important in research on terrestrial ecosystems, carbon cycles and climate change. Eight-day gross primary production (GPP) and annual net primary production (NPP) are contained in MODerate Resolution Imaging Spectroradiometer (MODIS) products (MOD17), which are considered the first operational datasets for monitoring global vegetation productivi...

متن کامل

Evaluation and comparison of gross primary production estimatesfor the Northern Great Plains grasslands

Two spatially-explicit estimates of gross primary production (GPP) are available for the Northern Great Plains. An empirical piecewise regression (PWR) GPP model was developed from flux tower measurements to map carbon flux across the region. The Moderate Resolution Imaging Spectrometer (MODIS) GPP model is a process-based model that uses flux tower data to calibrate its parameters. Verificatio...

متن کامل

Evaluation of the Latest MODIS GPP Products across Multiple Biomes Using Global Eddy Covariance Flux Data

The latest MODIS GPP (gross primary productivity) product, MOD17A2H, has great advantages over the previous version, MOD17A2, because the resolution increased from 1000 m to 500 m. In this study, MOD17A2H GPP was assessed using the latest eddy covariance (EC) flux data (FLUXNET2015 Dataset) at eighteen sites in six ecosystems across the globe. The sensitivity of MOD17A2H GPP to the meteorology ...

متن کامل

A global moderate resolution dataset of gross primary production of vegetation for 2000–2016

Accurate estimation of the gross primary production (GPP) of terrestrial vegetation is vital for understanding the global carbon cycle and predicting future climate change. Multiple GPP products are currently available based on different methods, but their performances vary substantially when validated against GPP estimates from eddy covariance data. This paper provides a new GPP dataset at mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010